The number of cubic surfaces with 27 lines over a finite field

نویسندگان

چکیده

We determine the number of cubic surfaces with 27 lines over a finite field $${{\mathbb {F}}}_q$$ . This is based on exploiting relationship between non-conical six-arcs in projective plane embedded three-space and lines. revisit this classical relationship, which goes back to work Clebsch nineteenth century. Our result can be used as an enumerative check for computer classification fields.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Tate conjecture for cubic fourfolds over a finite field

If X/F is a smooth projective variety over a finite field F of characteristic p > 0 and X = X ⊗ F, there is a cycle class map CH(X)→ H et (X,Q`(i)) for ` 6= p from the Chow group of codimension i cycles on X to étale cohomology. The image of this map lies in the subspace of H et (X,Q`(i)) which is invariant under the natural Galois action. In [T3], Tate conjectures that, in fact, this subspace ...

متن کامل

Construction of singular surfaces over a finite field

Fix a prime power q and integers m ≥ 2, σ > 0, x > 0, g ≥ 0, d ≥ mσ + 1 such that q ≥ (δ − 1)δ3, where δ := d3 + 3dx + 4x + 2g − 2. Let C ⊂ P be a smooth degree x curve defined over Fq such that h(P,IC(σ − 1)) = h(C,OC (σ − 2)) = 0 and pa(C) = g. Here we prove the existence of a degree d surface X ⊆ P3 defined over Fq, such that Sing(X) = C and X has ordinary multiplicity m along C, i.e. for ev...

متن کامل

Homeomorphisms of Affine Surfaces over a Finite Field

The main result of this note is essentially the following: Let V and V be irreducible affine surfaces over the algebraic closure of a finite field, and let C and C be irreducible curves on V and V, respectively. Then there is homeomorphism, with respect to the Zariski topology, from V onto V carrying C onto C. (The actual theorem is a little stronger; see Theroem 6 near the end of the paper). T...

متن کامل

On the quasi group of a cubic surface over a finite field

We construct nontrivial homomorphisms from the quasi group of some cubic surfaces over Fp into a group. We show experimentally that the homomorphisms constructed are the only possible ones and that there are no nontrivial homomorphisms in the other cases. Thereby, we follow the classification of cubic surfaces, due to A.Cayley. 1 The quasi group of a cubic surface 1.1. –––– According to Yu. I. ...

متن کامل

enumerating algebras over a finite field

‎we obtain the porc formulae for the number of non-associative algebras‎ ‎of dimension 2‎, ‎3 and 4 over the finite field gf$(q)$‎. ‎we also give some‎ ‎asymptotic bounds for the number of algebras of dimension $n$ over gf$(q)$.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebraic Combinatorics

سال: 2021

ISSN: ['0925-9899', '1572-9192']

DOI: https://doi.org/10.1007/s10801-020-01009-3